34 research outputs found

    Optical properties and morphology of InAs ∕ InP (113)B surface quantum dots

    No full text
    We report on long-wavelength photoluminescence(PL) emission at room temperature from self-organized InAssurfacequantum dotsgrown by gas-source molecular beam epitaxy on a GaInAsP∕InP (113)B substrate. The influence of arsenic pressure conditions during growth on the PL emission of surfacequantum dots is detailed as well as oxide/contamination layer formation after growth. Experimental results are in good agreement with six-band k⋅p theory in the envelope function approximation.This work was supported by the SANDIE European Network of Excellence

    Planck intermediate results. VIII. Filaments between interacting clusters

    Get PDF
    About half of the baryons of the Universe are expected to be in the form of filaments of hot and low density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories which are limited in sensitivity to the diffuse low density medium. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we select physical pairs of clusters as candidates. Using the Planck data we construct a local map of the tSZ effect centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray maps of these pairs. After having modelled and subtracted the tSZ effect and X-ray emission for each cluster in the pair we study the residuals on both the SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&

    Planck early results XXV : Thermal dust in nearby molecular clouds

    Get PDF
    Peer reviewe

    Planck early results XI : Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations

    Get PDF
    Peer reviewe

    Planck early results XVII : Origin of the submillimetre excess dust emission in the Magellanic Clouds

    Get PDF
    Peer reviewe

    Planck early results XXIII : The first all-sky survey of Galactic cold clumps

    Get PDF
    Peer reviewe

    Planck intermediate results: III. the relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    Get PDF
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL-D A2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations. © ESO, 2013

    Planck early results XIV : ERCSC validation and extreme radio sources

    Get PDF
    Peer reviewe

    Planck early results XXIV : Dust in the diffuse interstellar medium and the Galactic halo

    Get PDF
    Peer reviewe

    Planck early results XVIII : The power spectrum of cosmic infrared background anisotropies

    Get PDF
    Peer reviewe
    corecore